ФАМАРКЕТ
Торговля строительными материалами

Физические свойства строительных материалов

Физические свойства определяются параметрами физического состояния материалов под воздействием внешней среды и условий их работы (действие воды, высоких и низких температур и т. п.).

Истинная плотность - величина, определяемая отношением массы однородного материала т (кг) к занимаемому им объему в абсолютно плотном состоянии, т. е. без пор и пустот

Размерность истинной плотности - кг/м3 или г/см3. Истинная плотность каждого материала - постоянная физическая характеристика, которая не может быть изменена без изменения его химического состава или молекулярной структуры.

Так, истинная плотность неорганических материалов, природных и искусственных камней, состоящих в основном из оксидов кремния, алюминия и кальция, составляет 2400...3100 кг/м3, органических материалов, состоящих в основном из углерода, кислорода и водорода, - 800... 1400, древесины, состоящей в основном из целлюлозы, - 1550 кг/м3. Истинная плотность металлов колеблется в широком диапазоне: алюминия - 2700 кг/м3, стали - 7850, свинца - 11300 кг/м3.

В строительных конструкциях материал находится в естественном состоянии, т. е. занимаемый им объем обязательно включает в себя и поры. В этом случае для характеристики физического состояния материала используется понятие средней плотности.

Средняя плотность - величина, определяемая отношением массы однородного материала т (кг) к занимаемому им объему в естественном состоянии Fe (м3)

Средняя плотность - важная физическая характеристика материала, изменяющаяся в зависимости от его структуры и влажности в широких пределах: от 5 (пористая пластмасса) до 7850 кг/м3 (сталь). Средняя плотность оказывает существенное влияние на механическую прочность, водопоглощение, теплопроводность и другие свойства материалов.

Пористость - степень заполнения объема материала порами. Пористость - величина относительная, выражается в процентах или долях объема материала.

Пористость строительных материалов колеблется в пределах от 0 (сталь, стекло) до 90...98 % (пенопласт)

Пористость материала характеризуют не только с количественной стороны, но и по характеру пор: замкнутые и открытые, мелкие (размером в сотые и тысячные доли миллиметра) и крупные (от десятых долей миллиметра до 2...5 мм). По характеру пор оценивают способность материала поглощать воду. Так, полистирольный пенопласт, пористость которого достигает 95 %, имеет замкнутые поры и практически не поглощает воду. В то же время керамический кирпич, имеющий пористость в три раза меньшую (т. е. около 30 %), благодаря открытому характеру пор (большинство пор представляют собой сообщающиеся капилляры) активно поглощает воду.

Величина прочности также зависит от размеров пор. Она возрастает с их уменьшением. Прочность мелкопористых материалов, а также материалов с закрытой пористостью выше, чем прочность крупнопористых и с открытой пористостью.

Для сыпучих материалов (цемент, песок, гравий, щебень) рассчитывают насыпную плотность.

Насыпная плотность - величина, определяемая отношением массы материала т (Kr) K занимаемому им объему в рыхлом состоянии VH (м )

Величина Va включает в себя объем всех частиц сыпучего материала и объем пространств между частицами, называемых пустотами. Если для зернистого материала известны насыпная плотность рн и средняя плотность зерен рс, то можно рассчитать его пустотность а - относительную характеристику, выражаемую в долях единицы или в процентах

По физическому смыслу понятия пористость и пустотность аналогичны. При изготовлении бетона стремятся использовать сыпучие заполнители - песок, щебень или гравий с минимальной пустотностью. В этом случае для заполнения пустот потребуется меньше цемента и бетон будет дешевле.

Очень часто в процессе эксплуатации строительные материалы и конструкции подвергаются воздействию воды, и свойства материалов изменяются. Количественно оценить свойства материала в этом случае позволяют следующие понятия.

Водопоглощение материалов, зависящее от характера пористости, может изменяться в широких пределах. Значения WM составляют для гранита 0,02...0,7 %, тяжелого бетона - 2...4, кирпича 8...20, легких теплоизоляционных материалов с открытой пористостью - 100 % и более. Водопоглощение по объему WQ не превышает пористости, так как объем впитанной материалом воды не может быть больше объема пор.

Величины W0 и WM характеризуют предельный случай, когда материал более не в состоянии впитывать влагу. В реальных конструкциях материал может содержать некоторое количество влаги, полученной при кратковременном увлажнении капельножидкой водой либо в результате конденсации в порах водяных паров из воздуха. В этом случае состояние материала характеризуют влажностью.

Влажность - отношение массы воды, находящейся в данный момент в материале тв, к массе (реже - к объему) материала в сухом состоянии

Влажность может изменяться от нуля, когда материал сухой, до величины WM, соответствующей максимальному водосодержанию. Увлажнение приводит к изменению многих свойств материала: повышается масса строительной конструкции, возрастает теплопроводность; под влиянием расклинивающего действия воды уменьшается прочность материала.

Для многих строительных материалов влажность нормирована. Так, влажность молотого мела - 2 %, стеновых материалов -5...7, воздушно-сухой древесины- 12...18 %.

Водостойкость - свойство материала сохранять прочность при насыщении его водой. Критерием водостойкости строительных материалов служит коэффициент размягчения - отношение прочности при сжатии материала, насыщенного водой, RB к прочности при сжатии сухого материала

Материалы, у которых коэффициент размягчения больше 0,75, называют водостойкими.

Водонепроницаемость - свойство материала сопротивляться проникновению в него воды под давлением. Это свойство особенно важно для бетона, воспринимающего напор воды (трубы, резервуары, плотины). Водонепроницаемость бетона оценивают маркой по W (W-2...W-8), обозначающей максимальное одностороннее гидростатическое давление, при котором стандартный образец не пропускает воду. Для гидроизоляционных материалов водонепроницаемость характеризуется временем, по истечении которого появляется просачивание воды под определенным давлением через образец материала (мастика, гидроизол).

Гигроскопичность - свойство капиллярно-пористого материала поглощать влагу из воздуха. С увеличением относительной влажности воздуха и снижением температуры гигроскопичность повышается.

Гигроскопичность отрицательно сказывается на свойствах строительных материалов. Так, цемент при хранении под влиянием влаги воздуха гидратируется и комкуется, при этом снижается его марка. Весьма гигроскопична древесина, от влаги она разбухает, коробится и трескается.

За характеристику гигроскопичности принята величина отношения массы поглощенной влаги при относительной влажности воздуха 100 % и температуре +20 °С к массе сухого материала.

Морозостойкость - свойство материала в насыщенном водой состоянии выдерживать многократное число циклов попеременного замораживания и оттаивания без видимых признаков разрушения и значительного снижения прочности и массы. Морозостойкость - одно из основных свойств, характеризующих долговечность строительных материалов в конструкциях и сооружениях. Как известно, вода, находящаяся в порах материала, при переходе в лед увеличивается в объеме примерно на 9... 10 % и вызывает растягивающие напряжения. Ритмично чередующаяся кристаллизация льда в порах с последующим оттаиванием приводит к дополнительным внутренним напряжениям. Могут возникнуть микро- и макротрещины с возможным разрушением структуры и снижением прочности.

Для испытания на морозостойкость стандартные образцы материалов или целые мелкоштучные изделия (например, кирпич) вначале насыщают водой, а затем замораживают при температуре минус 15...20 °С. Затем образцы извлекают из морозильной камеры и оттаивают в воде комнатной температуры. Такое замораживание и оттаивание составляет один цикл. Марка по морозостойкости (F10, F15, F25, F35, F50, F75, F100, F150, F200, F300 для каменных материалов) характеризуется числом циклов замораживания и оттаивания, которое выдержал материал, при допустимом снижении прочности или уменьшении массы образцов.

Высокой морозостойкостью обладают плотные материалы, которые имеют малую пористость и закрытые поры. Материалы пористые с открытыми порами и соответственно большим во до-поглощением часто оказываются неморозостойкими.

При воздействии статических или циклических тепловых факторов материал характеризуется теплофизическими свойствами. Они важны для теплоизоляционных и жаростойких материалов, материалов ограждающих конструкций и изделий, твердеющих при тепловой обработке. К ним относятся теплоемкость, теплопроводность, тепловое расширение, огнестойкость и огнеупорность.

Теплоемкость - свойство материала поглощать при нагревании и отдавать при охлаждении определенное количество теплоты. Теплоемкость - мера энергии, необходимой для повышения температуры материала.

Теплоемкость, отнесенную к единице массы, называют удельной теплоемкостью С и измеряют в Дж/(кг °С). Удельная теплоемкость - это количество теплоты, необходимой для нагревания 1 кг материала на 1 °С. У органических материалов теплоемкость обычно выше, чем у неорганических, Дж/(кг °С): древесины - 2,38.. .2,72; стали - 0,46; воды - 4,187. Наибольшую теплоемкость имеет вода, поэтому с повышением влажности материалов их теплоемкость возрастает. Численные характеристики теплоемкости используют при расчете теплоустойчивости ограждающих конструкций. Кроме того, значения С надо знать для расчета затрат на топливо и энергию на обогрев материалов и конструкций при зимних работах

Теплопроводность - свойство материала передавать через свою толщу тепловой поток, возникающий вследствие разности температур на противоположных поверхностях Это свойство имеет важное значение для строительных материалов, применяемых при устройстве ограждающих конструкций (стен, покрытий и перекрытий), и материалов, предназначенных для тепловой изоляции. Теплопроводность материала зависит от его строения, химического состава, пористости и характера пор, а также влажности и температуры, при которой происходит передача теплоты.

Теплопроводность характеризуют коэффициентом теплопроводности, указывающим, какое количество теплоты в Дж способен пропустить материал через 1 м2 поверхности при толщине материала 1 м и разности температур на противоположных поверхностях 1 °С в течение 1 ч. Коэффициент теплопроводности, Вт/(м *°С), равен: для воздуха - 0,023; для воды - 0,59; для льда - 2,3; для керамического кирпича - 0,82. Воздушные поры в материале резко снижают его теплопроводность, а увлажнение водой сильно повышает ее, так как коэффициент теплопроводности воды в 25 раз выше, чем у воздуха.

С ростом температуры теплопроводность большинства строительных материалов увеличивается, что объясняется повышением кинетической энергии молекул, слагающих вещество материала

Тепловое расширение - свойство материала изменять размеры при нагреве и охлаждении. Для численной характеристики такого явления используют температурный коэффициент линейного расширения (ТКЛР), который показывает, на какую долю первоначальной длины расширяется материал при повышении температуры на 1 °С.

Значения ТКЛР составляют, °С~1: для бетона (10... 12) - 10 6, стали 10 10~6, древесины вдоль волокон - (3...5) 10 6. ТКЛР полимерных строительных материалов в 10...20 раз больше.

Вследствие термических и усадочных деформаций в сооружениях большой протяженности могут образоваться недопустимые по условиям эксплуатации перекосы, трещины или разрывы. Чтобы этого не произошло, устраивают температурно-усадочные (деформационные) швы, которые как бы разрезают сооружение. Расстояние между швами назначают с учетом термического расширения материалов.

Огнестойкость - свойство материала выдерживать без разрушения воздействие высоких температур, пламени и воды в условиях пожара. Материал в таких условиях либо сгорает, либо растрескивается, сильно деформируется, разрушается от потери прочности. По огнестойкости различают материалы несгораемые, трудносгораемые и сгораемые.

Несгораемые материалы в условиях высоких температур не подвержены воспламенению, тлению или обугливанию Это кирпич, бетон и др. Однако некоторые несгораемые материалы -мрамор, стекло, асбестоцемент - при резком нагревании разрушаются, а стальные конструкции сильно деформируются и теряют прочность.

Трудносгораемые материалы под воздействием огня или высокой температуры медленно воспламеняются, но после удаления источника огня их тление или горение прекращается. К таким материалам относятся фибролит, асфальтобетон, пропитанная антипиренами древесина.

Сгораемые материалы под воздействием огня или высокой температуры горят и продолжают гореть после удаления источника огня. Это - древесина, обои, битуминозные кровельные и полимерные материалы и др.

Предел огнестойкости - это промежуток времени (минуты или часы) от начала возгорания до возникновения в конструкции предельного состояния. Предельным состоянием считают потерю несущей способности, т. е. обрушение конструкции; возникновение в ней сквозных трещин, через которые на противоположную поверхность могут проникать продукты горения и пламя; недопустимый нагрев поверхности, противоположной действию огня, который может вызвать самопроизвольное возгорание других частей сооружения.

Огнеупорность - свойство материала выдерживать длительное воздействие высокой температуры (от 1580 °С и выше), не деформируясь и не размягчаясь. Огнеупорные материалы (динас, шамот, хромомагнезит, корунд), применяемые для внутренней футеровки промышленных печей, не деформируются и не размягчаются при температуре 1580 °С и выше. Тугоплавкие материалы (тугоплавкий печной кирпич) выдерживают без оплавления и деформации температуру 1350.. J580 °С, легкоплавкие (кирпич керамический строительный) - до 1350 °С.

Акустические свойства материалов - это свойства, связанные с взаимодействием материала и звука. Звук, или звуковые волны - это механические колебания, распространяющиеся в твердых, жидких и газообразных средах. Строителя интересуют две стороны взаимодействия звука и материала: в какой степени материал проводит сквозь свою толщу звук - звукопроводность и в какой мере материал поглощает и отражает падающий на него звук - звукопоглощение.

При падении звуковой волны на ограждающую поверхность звуковая энергия отражается, поглощается и проводится твердым телом.

Коэффициент звукопоглощения зависит от ряда факторов: уровня и характеристик звука (шума), свойств поглощающего материала, способов его расположения по отношению к жесткой поверхности (потолку, стене) и методов измерения.

Звукопоглощение зависит от характера поверхности и пористости материала. Материалы с гладкой поверхностью отражают большую часть падающего на них звука, поэтому в помещении с гладкими стенами звук, многократно отражаясь от них, создает постоянный шум. Если же поверхность материала имеет открытую пористость, то звуковые колебания, входя в поры, поглощаются материалом, а не отражаются.

Сущность физического явления, происходящего при гашении звука пористым телом, заключается в следующем. Звуковые волны, падая на поверхность такого материала и проникая далее в его поры, возбуждают колебания воздуха, находящегося в узких порах. При этом значительная часть звуковой энергии расходуется. Высокая степень сжатия воздуха и его трение о стенки пор вызывают разогрев. За счет этого кинетическая энергия звуковых колебаний преобразуется в тепловую, которая рассеивается в среде.

Гашению звука способствует деформирование гибкого скелета звукопоглощающего материала, на что также тратится звуковая энергия; этот вклад особенно заметен в пористо-волокнистых материалах с открытой сообщающейся пористостью при ее общем объеме не менее 75 %.

Звукопроводность зависит от массы материала и его строения. Материал тем меньше проводит звук, чем больше его масса: если масса материала велика, то энергии звуковых волн не хватает, чтобы пройти сквозь него, так как для этого надо привести материал в колебание.

Придание звукоизолирующих свойств ограждению базируется на трех основных физических явлениях: отражении воздушных звуковых волн от поверхности ограждения, поглощении звуковых волн материалом ограждения, гашении ударного или воздушного шума за счет деформации элементов конструкции и материалов, из которых она изготовлена.

Способность отражать звуковые волны важна для наружных ограждений зданий. В этом случае для повышения отражения воздушных звуковых волн применяют массивные конструкции с гладкой наружной поверхностью.

Для внутренних помещений высокая отражающая способность ограждения (перегородок) недостаточна, так как отраженные звуковые волны будут усиливать шум в наиболее шумном помещении. В данном случае применяют многослойные конструкции, в состав которых входят элементы из звукоизоляционных материалов, эффективность которых оценивается динамическим модулем упругости. В качестве звукоизоляционных прокладок применяют пористо-волокнистые материалы из минеральной или стеклянной ваты, древесных волокон (древесноволокнистые плиты), засыпки из пористых зерен (керамзита, шлака и др.).



Наверх
Создание Интернет-магазина Famarket.ru - PHPShop. Все права защищены © 2004-2018.